This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include "../library/template/template.cpp"
#include "../library/others/modint.cpp"
#include "../library/datastructure/lazysegtree.cpp"
inline auto f2 = [](pair<Modint, Modint> a, pair<Modint, Modint> b) {
return make_pair(a.first * b.first, a.second * b.first + b.second);
};
inline auto f3 = [](Modint a, pair<Modint, Modint> b) {
return a * b.first + b.second;
};
inline auto f4 = [](pair<Modint, Modint> a, int siz) {
return make_pair(a.first, a.second * siz);
};
int main() {
int n, q;
scanf("%d%d", &n, &q);
lazysegtree<Modint, pair<Modint, Modint>, decltype(plus<Modint>()), decltype(f2), decltype(f3), decltype(f4)> seg(n, 0, plus<Modint>(), make_pair(1, 0), f2, f3, f4);
Modint tmp;
rep(i, n) {
scanf("%d", &tmp.val);
seg.set(i, tmp);
}
seg.build();
int type, l, r, b, c;
while (q--) {
scanf("%d%d%d", &type, &l, &r);
if (type) {
printf("%d\n", seg.query(l, r).val);
}
else {
scanf("%d%d", &b, &c);
seg.update(l, r, make_pair(b, c));
}
}
Please AC;
}
#line 1 "kyopro/test/lazysegtree_yosupo-judge.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#line 1 "kyopro/library/template/template.cpp"
/*
* @title template
* @docs kyopro/docs/template.md
*/
/*
このコード、と~おれ!
Be accepted!
∧_∧
(。・ω・。)つ━☆・*。
⊂ ノ ・゜+.
しーJ °。+ *´¨)
.· ´¸.·*´¨) ¸.·*¨)
(¸.·´ (¸.·'* ☆
*/
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <vector>
#include <numeric>
#include <iostream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <regex>
#include <functional>
#include <complex>
#include <list>
#include <cassert>
#include <iomanip>
#include <set>
#include <stack>
#include <bitset>
#include <array>
#include <chrono>
//#pragma GCC target("arch=skylake-avx512")
//#pragma GCC target ("avx2")
//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")
//#pragma GCC optimize ("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define repeat(i, n, m) for(int i = n; i < (m); ++i)
#define rep(i, n) for(int i = 0; i < (n); ++i)
#define printynl(a) printf(a ? "yes\n" : "no\n")
#define printyn(a) printf(a ? "Yes\n" : "No\n")
#define printYN(a) printf(a ? "YES\n" : "NO\n")
#define printim(a) printf(a ? "possible\n" : "imposible\n")
#define printdb(a) printf("%.50lf\n", a)
#define printLdb(a) printf("%.50Lf\n", a)
#define printdbd(a) printf("%.16lf\n", a)
#define prints(s) printf("%s\n", s.c_str())
#define all(x) (x).begin(), (x).end()
#define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI)
#define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L)
#define Please return
#define AC 0
#define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d))
using ll = long long;
using ull = unsigned long long;
constexpr int INF = 1073741823;
constexpr int MINF = -1073741823;
constexpr ll LINF = ll(4661686018427387903);
constexpr ll MOD = 1e9 + 7;
constexpr ll mod = 998244353;
constexpr long double eps = 1e-6;
const long double PI = acosl(-1.0L);
using namespace std;
void scans(string& str) {
char c;
str = "";
scanf("%c", &c);
if (c == '\n')scanf("%c", &c);
while (c != '\n' && c != -1 && c != ' ') {
str += c;
scanf("%c", &c);
}
}
void scanc(char& str) {
char c;
scanf("%c", &c);
if (c == -1)return;
while (c == '\n') {
scanf("%c", &c);
}
str = c;
}
double acot(double x) {
return PI / 2 - atan(x);
}
ll LSB(ll n) { return (n & (-n)); }
template<typename T>
inline T chmin(T& a, const T& b) {
if (a > b)a = b;
return a;
}
template<typename T>
inline T chmax(T& a, const T& b) {
if (a < b)a = b;
return a;
}
////cpp_int
//#include <boost/multiprecision/cpp_int.hpp>
//#include <boost/multiprecision/cpp_dec_float.hpp>
//using namespace boost::multiprecision;
//atcoder library
//#include <atcoder/all>
//using namespace atcoder;
//random_device seed_gen;
//mt19937 engine(seed_gen());
//uniform_distribution dist(-1.0, 1.0);
/*----------------------------------------------------------------------------------*/
#line 4 "kyopro/test/lazysegtree_yosupo-judge.test.cpp"
#line 1 "kyopro/library/others/modint.cpp"
/*
* @title modint
* @docs kyopro/docs/modint.md
*/
template<int mod>
struct modint {
int val;
modint() : val(0) {};
modint(ll x) : val(x >= 0 ? x % mod : (mod + x % mod) % mod) {};
modint& operator=(const modint& x) {
val = x.val;
return *this;
}
modint& operator+=(const modint& x) {
val += x.val;
if (val >= mod)val -= mod;
return *this;
}
modint& operator-=(const modint& x) {
val += mod - x.val;
if (val >= mod)val -= mod;
return *this;
}
modint& operator*=(const modint& x) {
val = (int)((ll)val * (ll)x.val % mod);
return *this;
}
modint& operator/=(const modint& x) {
int a = x.val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
*this *= modint(u);
return *this;
}
modint operator++() {
val = (val + 1 == mod ? 0 : val + 1);
return *this;
}
modint operator--() {
val = (val == 0 ? mod - 1 : val - 1);
return *this;
}
modint operator+(const modint& x) const {
return (modint(*this) += x);
}
modint operator-(const modint& x) const {
return (modint(*this) -= x);
}
modint operator*(const modint& x) const {
return (modint(*this) *= x);
}
modint operator/(const modint& x) const {
return (modint(*this) /= x);
}
bool operator==(const modint& x)const {
return (val == x.val);
}
bool operator!=(const modint& x)const {
return (val != x.val);
}
bool operator<(const modint& x)const {
return (val < x.val);
}
bool operator>(const modint& x)const {
return (val > x.val);
}
modint pow(ll n) {
modint ret(1), a(val);
while (n > 0) {
if (n % 2) ret *= a;
a *= a;
n /= 2;
}
return ret;
}
static int getmod() { return mod; };
};
using ModInt = modint<MOD>;
using Modint = modint<mod>;
#line 1 "kyopro/library/datastructure/lazysegtree.cpp"
/*
* @title lazy-segment-tree
* @docs kyopro/docs/lazysegtree.md
*/
//セグ木/0-indexed/非再帰/n の大きさ, a (単位元), 本体のマージ関数, 遅延ノードの単位元, 遅延ノードのマージ関数, 遅延ノードと本体のマージ関数 で segtree を初期化する
template<typename T, typename U, typename F, typename F2, typename F3, typename F4>
struct lazysegtree {
//木を配列であらわしたもの
vector<T> seg;
//遅延ノード
vector<U> lazy;
//サイズノード
vector<int> size;
//遅延ノードのフラグ管理
vector<bool> flag;
//木の1/2の大きさ
int siz, height;
//本体の単位元
const T se;
//遅延ノードの単位元
const U le;
////本体のマージ関数の型
//using F = function<T(T, T)>;
////遅延ノードのマージ関数の型
//using F2 = function<U(U, U)>;
////遅延ノードと本体のマージ関数の型
//using F3 = function<T(T, U)>;
////サイズを使った演算をする関数の型
//using F4 = function<U(U, int)>;
//本体同士をマージする関数
const F f;
//遅延ノード同士をマージする関数
const F2 f2;
//遅延ノードと本体をマージする関数
const F3 f3;
//サイズを使った演算をする関数
const F4 f4;
//n の大きさ, a (単位元), 本体のマージ関数, 遅延ノードの単位元, 遅延ノードのマージ関数, 遅延ノードと本体のマージ関数, サイズを使った演算をする関数 で segtree を初期化する
lazysegtree(int n, const T se, const F f, const U le, const F2 f2, const F3 f3, const F4 f4) : se(se), f(f), le(le), f2(f2), f3(f3), f4(f4) {
siz = 1;
height = 0;
while (siz < n)siz <<= 1, ++height;
seg.assign(2 * siz - 1, se);
lazy.assign(2 * siz - 1, le);
size.assign(2 * siz - 1, 1);
flag.assign(2 * siz - 1, false);
--siz;
}
//k (0-indexed) 番目に t を代入
void set(int k, const T& t) {
seg[k + siz] = t;
}
//f によって木を構築
void build() {
for (int i = siz - 1; i >= 0; --i) {
seg[i] = f(seg[i * 2 + 1], seg[i * 2 + 2]);
size[i] = size[i * 2 + 1] + size[i * 2 + 2];
}
}
//i 番目の要素を返す
T operator[](const int i) {
return query(i, i + 1);
}
//k 番目の遅延ノードを伝播する
inline T merge(int k) {
return (!flag[k] ? seg[k] : f3(seg[k], f4(lazy[k], size[k])));
}
//子に伝播
inline void eval(int k) {
if (flag[k]) {
lazy[k * 2 + 1] = f2(lazy[k * 2 + 1], lazy[k]);
lazy[k * 2 + 2] = f2(lazy[k * 2 + 2], lazy[k]);
flag[k * 2 + 1] = flag[k * 2 + 2] = true;
seg[k] = merge(k);
lazy[k] = le;
flag[k] = false;
}
}
inline void bottomup(int k) {
while (k > 0) {
k = ((k - 1) >> 1);
seg[k] = f(merge(2 * k + 1), merge(2 * k + 2));
}
}
inline void topdown(int k) {
for (int i = height; i > 0; --i) {
eval(((k + 1) >> i) - 1);
}
}
//k 番目の値を a に更新
void update(int k, T a) {
k += siz;
//必要であればここを変える
seg[k] = a;
while (k > 0) {
k = ((k - 1) >> 1);
seg[k] = f(seg[k * 2 + 1], seg[k * 2 + 2]);
}
}
//[l, r) の値を a に更新
void update(int l, int r, U a) {
int x = l + siz, y = r + siz - 1;
topdown(x);
topdown(y);
for (l += siz, r += siz; l < r; l >>= 1, r >>= 1) {
if (!(l & 1)) {
lazy[l] = f2(lazy[l], a);
flag[l] = true;
++l;
}
if (!(r & 1)) {
--r;
lazy[r] = f2(lazy[r], a);
flag[r] = true;
}
}
bottomup(x);
bottomup(y);
}
//[a, b) について f した結果を返す
T query(int a, int b) {
topdown(a += siz);
topdown(b += siz - 1);
T l = se, r = se;
for (++b; a < b; a >>= 1, b >>= 1) {
if (!(a & 1))l = f(l, merge(a++));
if (!(b & 1))r = f(merge(--b), r);
}
return f(l, r);
}
////[start, end) について、[l, r) を調べながら k 番目が check を満たすか二分探索 最後が true なら left, false なら right fの逆演算
//template<typename C, typename FT>
//int find(const int start, const int end, int l, int r, int k, const C check, T& checknum, const bool b, const FT revf) {
// //cerr << checknum << '\n';
// //範囲外またはそこがすでに満たさないとき
// //cerr << k << ',' << checknum << '\n';
// if (start <= l && r <= end && !check(seg[k], checknum)) {
// checknum = revf(checknum, seg[k]);
// return -1;
// }
// if ((r <= start || l >= end)) {
// return -1;
// }
// //既に葉
// if (k >= siz) {
// return k - siz;
// }
// int res;
// if (b) {
// //左側を調べる
// res = find< C, FT >(start, end, l, ((l + r) >> 1), (k << 1) + 1, check, checknum, b, revf);
// //左側が適してたらそれが答え
// if (res != -1)return (res);
// return find< C, FT >(start, end, ((l + r) >> 1), r, (k << 1) + 2, check, checknum, b, revf);
// }
// else {
// //右側を調べる
// res = find< C, FT >(start, end, ((l + r) >> 1), r, (k << 1) + 2, check, checknum, b, revf);
// //右側が適してたらそれが答え
// if (res != -1)return (res);
// return find< C, FT >(start, end, l, ((l + r) >> 1), (k << 1) + 1, check, checknum, b, revf);
// }
//}
//template<typename C, typename FT>
//int find_left(int start, int end, const C check, T checknum, FT revf) {
// return find< C, FT >(start, end, 0, siz + 1, 0, check, checknum, true, revf);
//}
//template<typename C, typename FT>
//int find_right(int start, int end, const C check, T checknum, FT revf) {
// return find< C, FT >(start, end, 0, siz + 1, 0, check, checknum, false, revf);
//}
};
template<typename T, typename U, typename F, typename F2, typename F3, typename F4>
lazysegtree<T, U, F, F2, F3, F4> get_lazy_segtree(int n, const T& se, const F& f, const U& le, const F2& f2, const F3& f3, const F4& f4) {
return { n, se, f, le, f2, f3, f4 };
}
#line 7 "kyopro/test/lazysegtree_yosupo-judge.test.cpp"
inline auto f2 = [](pair<Modint, Modint> a, pair<Modint, Modint> b) {
return make_pair(a.first * b.first, a.second * b.first + b.second);
};
inline auto f3 = [](Modint a, pair<Modint, Modint> b) {
return a * b.first + b.second;
};
inline auto f4 = [](pair<Modint, Modint> a, int siz) {
return make_pair(a.first, a.second * siz);
};
int main() {
int n, q;
scanf("%d%d", &n, &q);
lazysegtree<Modint, pair<Modint, Modint>, decltype(plus<Modint>()), decltype(f2), decltype(f3), decltype(f4)> seg(n, 0, plus<Modint>(), make_pair(1, 0), f2, f3, f4);
Modint tmp;
rep(i, n) {
scanf("%d", &tmp.val);
seg.set(i, tmp);
}
seg.build();
int type, l, r, b, c;
while (q--) {
scanf("%d%d%d", &type, &l, &r);
if (type) {
printf("%d\n", seg.query(l, r).val);
}
else {
scanf("%d%d", &b, &c);
seg.update(l, r, make_pair(b, c));
}
}
Please AC;
}