This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/shortest_path"
#include "../library/template/template.cpp"
#include "../library/graph/graph_template.cpp"
#include "../library/graph/dijkstra_path.cpp"
int main() {
int n, m, s, t;
scanf("%d%d%d%d", &n, &m, &s, &t);
graph<ll> g(n, true, true);
g.read(m, false);
vector<int> path;
auto ans = dijkstra<ll>(g, path, s, t, n, LINF, false);
int siz = (int)path.size() - 1;
if (ans[t] == LINF) {
puts("-1");
return AC;
}
printf("%lld %d\n", ans[t], siz);
rep(i, siz) {
printf("%d %d\n", path[i], path[i + 1]);
}
Please AC;
}
#line 1 "kyopro/test/dijkstra_path_yosupo-judge.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/shortest_path"
#line 1 "kyopro/library/template/template.cpp"
/*
* @title template
* @docs kyopro/docs/template.md
*/
/*
このコード、と~おれ!
Be accepted!
∧_∧
(。・ω・。)つ━☆・*。
⊂ ノ ・゜+.
しーJ °。+ *´¨)
.· ´¸.·*´¨) ¸.·*¨)
(¸.·´ (¸.·'* ☆
*/
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <vector>
#include <numeric>
#include <iostream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <regex>
#include <functional>
#include <complex>
#include <list>
#include <cassert>
#include <iomanip>
#include <set>
#include <stack>
#include <bitset>
#include <array>
#include <chrono>
//#pragma GCC target("arch=skylake-avx512")
//#pragma GCC target ("avx2")
//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")
//#pragma GCC optimize ("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define repeat(i, n, m) for(int i = n; i < (m); ++i)
#define rep(i, n) for(int i = 0; i < (n); ++i)
#define printynl(a) printf(a ? "yes\n" : "no\n")
#define printyn(a) printf(a ? "Yes\n" : "No\n")
#define printYN(a) printf(a ? "YES\n" : "NO\n")
#define printim(a) printf(a ? "possible\n" : "imposible\n")
#define printdb(a) printf("%.50lf\n", a)
#define printLdb(a) printf("%.50Lf\n", a)
#define printdbd(a) printf("%.16lf\n", a)
#define prints(s) printf("%s\n", s.c_str())
#define all(x) (x).begin(), (x).end()
#define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI)
#define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L)
#define Please return
#define AC 0
#define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d))
using ll = long long;
using ull = unsigned long long;
constexpr int INF = 1073741823;
constexpr int MINF = -1073741823;
constexpr ll LINF = ll(4661686018427387903);
constexpr ll MOD = 1e9 + 7;
constexpr ll mod = 998244353;
constexpr long double eps = 1e-6;
const long double PI = acosl(-1.0L);
using namespace std;
void scans(string& str) {
char c;
str = "";
scanf("%c", &c);
if (c == '\n')scanf("%c", &c);
while (c != '\n' && c != -1 && c != ' ') {
str += c;
scanf("%c", &c);
}
}
void scanc(char& str) {
char c;
scanf("%c", &c);
if (c == -1)return;
while (c == '\n') {
scanf("%c", &c);
}
str = c;
}
double acot(double x) {
return PI / 2 - atan(x);
}
ll LSB(ll n) { return (n & (-n)); }
template<typename T>
inline T chmin(T& a, const T& b) {
if (a > b)a = b;
return a;
}
template<typename T>
inline T chmax(T& a, const T& b) {
if (a < b)a = b;
return a;
}
////cpp_int
//#include <boost/multiprecision/cpp_int.hpp>
//#include <boost/multiprecision/cpp_dec_float.hpp>
//using namespace boost::multiprecision;
//atcoder library
//#include <atcoder/all>
//using namespace atcoder;
//random_device seed_gen;
//mt19937 engine(seed_gen());
//uniform_distribution dist(-1.0, 1.0);
/*----------------------------------------------------------------------------------*/
#line 1 "kyopro/library/graph/graph_template.cpp"
/*
* @title template(graph)
* @docs kyopro/docs/graph_template.md
*/
template<typename T>
struct edge {
T cost;
int from, to;
edge(int from, int to) : from(from), to(to), cost(T(1)) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
};
template<typename T = int>
struct graph {
int n;
bool directed, weighted;
vector<vector<edge<T>>> g;
graph(int n, bool directed, bool weighted) : g(n), n(n), directed(directed), weighted(weighted) {}
void add_edge(int from, int to, T cost = T(1)) {
g[from].emplace_back(from, to, cost);
if (not directed) {
g[to].emplace_back(to, from, cost);
}
}
vector<edge<T>>& operator[](const int& idx) {
return g[idx];
}
void read(int e, bool one_indexed) {
int a, b, c = 1;
while (e--) {
scanf("%d%d", &a, &b);
if (weighted) {
scanf("%d", &c);
}
if (one_indexed)--a, --b;
add_edge(a, b, c);
}
}
void read(int e, bool one_indexed, const string& format) {
int a, b;
T c = T(1);
while (e--) {
scanf("%d%d", &a, &b);
if (weighted) {
scanf(format.c_str(), &c);
}
if (one_indexed)--a, --b;
add_edge(a, b, c);
}
}
};
#line 5 "kyopro/test/dijkstra_path_yosupo-judge.test.cpp"
#line 1 "kyopro/library/graph/dijkstra_path.cpp"
/*
* @title dijkstra(経路復元)
* @docs kyopro/docs/dijkstra_path.md
*/
template<typename T>
vector<T> dijkstra(graph<T>& gh, vector<int>& path, const int& v, const int& g, const int& n, const T Inf, const bool f) {
priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> priq;
vector<T> res(n);
vector<int> prev(n);
fill(all(prev), -1);
fill(all(res), Inf);
priq.push({ 0, v });
res[v] = 0;
int top;
while (!priq.empty()) {
auto now = priq.top();
top = now.second;
priq.pop();
if (res[top] < now.first)continue;
for (const auto& aa : gh[top]) {
if (res[top] + aa.cost > res[aa.to])continue;
else if (res[top] + aa.cost == res[aa.to]) {
if (f) prev[aa.to] = min(top, prev[aa.to]);
continue;
}
res[aa.to] = aa.cost + res[top];
prev[aa.to] = top;
priq.push({ res[aa.to], aa.to });
}
}
for (int i = g; i != -1; i = prev[i])path.push_back(i);
reverse(all(path));
return res;
}
#line 7 "kyopro/test/dijkstra_path_yosupo-judge.test.cpp"
int main() {
int n, m, s, t;
scanf("%d%d%d%d", &n, &m, &s, &t);
graph<ll> g(n, true, true);
g.read(m, false);
vector<int> path;
auto ans = dijkstra<ll>(g, path, s, t, n, LINF, false);
int siz = (int)path.size() - 1;
if (ans[t] == LINF) {
puts("-1");
return AC;
}
printf("%lld %d\n", ans[t], siz);
rep(i, siz) {
printf("%d %d\n", path[i], path[i + 1]);
}
Please AC;
}