This documentation is automatically generated by online-judge-tools/verification-helper
/*
* @title strongly connected components(強連結成分分解)
* @docs kyopro/docs/scc.md
*/
template<typename T = int>
struct stronglyconnectedcomponents {
int n, cur = 0;
//g: 元のグラフ, gg: 逆張りグラフ, cg: 強連結成分で圧縮したグラフ, sg: 強連結成分だけのグラフ
graph<T> g, cg, sg, gg;
vector<int> num, siz;
vector<vector<int>> vert;
stronglyconnectedcomponents(const int& n, graph<T>& g) : n(n), g(g), cg(n, g.directed, g.weighted), sg(n, g.directed, g.weighted), gg(n, g.directed, g.weighted), num(n) {
rep(i, n) for (const auto& aa : g[i])gg.add_edge(aa.to, aa.from, aa.cost);
}
void dfs(const int& now, stack<int>& st, vector<bool>& visited) {
visited[now] = true;
for (const auto& aa : g[now])if (not visited[aa.to])dfs(aa.to, st, visited);
st.push(now);
}
void build() {
stack<int> s, st;
vector<bool> visited(n);
rep(i, n) {
if (not visited[i]) dfs(i, st, visited);
}
fill(all(visited), false);
while (not st.empty()) {
int v = st.top();
st.pop();
if (not visited[v]) {
s.push(v);
while (not s.empty()) {
int ver = s.top();
s.pop();
num[ver] = cur;
for (const auto& aa : gg[ver]) if (not visited[aa.to])s.push(aa.to);
visited[ver] = true;
}
++cur;
}
}
siz.assign(cur, 1);
vert.assign(cur, {});
fill(all(visited), false);
rep(i, n) {
if (not visited[i])vert[num[i]].push_back(i);
visited[i] = true;
for (const auto& aa : g[i]) {
if (num[aa.to] == num[i]) {
sg.add_edge(aa.from, aa.to, aa.cost);
if (not visited[aa.to]) {
++siz[num[aa.to]];
visited[aa.to] = true;
vert[num[i]].push_back(aa.to);
}
}
else {
cg.add_edge(num[aa.from], num[aa.to], aa.cost);
}
}
}
}
int operator[](const int& i) { return num[i]; }
int size() { return cur; }
int size(const int& i) { return siz[i]; }
};
#line 1 "kyopro/library/graph/scc.cpp"
/*
* @title strongly connected components(強連結成分分解)
* @docs kyopro/docs/scc.md
*/
template<typename T = int>
struct stronglyconnectedcomponents {
int n, cur = 0;
//g: 元のグラフ, gg: 逆張りグラフ, cg: 強連結成分で圧縮したグラフ, sg: 強連結成分だけのグラフ
graph<T> g, cg, sg, gg;
vector<int> num, siz;
vector<vector<int>> vert;
stronglyconnectedcomponents(const int& n, graph<T>& g) : n(n), g(g), cg(n, g.directed, g.weighted), sg(n, g.directed, g.weighted), gg(n, g.directed, g.weighted), num(n) {
rep(i, n) for (const auto& aa : g[i])gg.add_edge(aa.to, aa.from, aa.cost);
}
void dfs(const int& now, stack<int>& st, vector<bool>& visited) {
visited[now] = true;
for (const auto& aa : g[now])if (not visited[aa.to])dfs(aa.to, st, visited);
st.push(now);
}
void build() {
stack<int> s, st;
vector<bool> visited(n);
rep(i, n) {
if (not visited[i]) dfs(i, st, visited);
}
fill(all(visited), false);
while (not st.empty()) {
int v = st.top();
st.pop();
if (not visited[v]) {
s.push(v);
while (not s.empty()) {
int ver = s.top();
s.pop();
num[ver] = cur;
for (const auto& aa : gg[ver]) if (not visited[aa.to])s.push(aa.to);
visited[ver] = true;
}
++cur;
}
}
siz.assign(cur, 1);
vert.assign(cur, {});
fill(all(visited), false);
rep(i, n) {
if (not visited[i])vert[num[i]].push_back(i);
visited[i] = true;
for (const auto& aa : g[i]) {
if (num[aa.to] == num[i]) {
sg.add_edge(aa.from, aa.to, aa.cost);
if (not visited[aa.to]) {
++siz[num[aa.to]];
visited[aa.to] = true;
vert[num[i]].push_back(aa.to);
}
}
else {
cg.add_edge(num[aa.from], num[aa.to], aa.cost);
}
}
}
}
int operator[](const int& i) { return num[i]; }
int size() { return cur; }
int size(const int& i) { return siz[i]; }
};