This documentation is automatically generated by online-judge-tools/verification-helper
/*
* @title kth-shortest-path(yen's algorithm)
* @docs kyopro/docs/kth-shortest-path_yen.md
*/
template<typename T>
vector<T> dijkstra(graph<T>& gh, vector<int>& path, const int& v, const int& g, const int& n, const T Inf, const vector<vector<bool>>& deleted, set<int> r) {
priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> priq;
vector<T> res(n);
vector<int> prev(n);
fill(all(prev), -1);
fill(all(res), Inf);
priq.push({ 0, v });
res[v] = 0;
int top;
while (!priq.empty()) {
top = priq.top().second;
priq.pop();
for (const auto& aa : gh[top]) {
if (res[top] + aa.cost >= res[aa.to] or deleted[top][aa.to] or r.find(aa.to) != r.end())continue;
res[aa.to] = aa.cost + res[top];
prev[aa.to] = top;
priq.push({ res[aa.to], aa.to });
}
}
for (int i = g; i != -1; i = prev[i])path.push_back(i);
reverse(all(path));
return res;
}
template<typename T>
void ksp(graph<T>& g, const int& n, const int& start, const int& goal, const int& k, vector<vector<int>>& path, vector<T>& ans, const T& Inf) {
set<vector<int>> routememo;
vector<T> res, anstmp;
vector<vector<bool>> deleted(n, vector<bool>(n));
ans.resize(k);
path.resize(k);
res = dijkstra<T>(g, path[0], start, goal, n, Inf, deleted, {});
ans[0] = res[goal];
anstmp = res;
routememo.insert(path[0]);
auto func = [](const tuple<T, vector<int>, vector<T>>& a, const tuple<T, vector<int>, vector<T>>& b) -> bool {
if (get<0>(a) != get<0>(b))return get<0>(a) > get<0>(b);
else if (get<1>(a) != get<1>(b))return get<1>(a) > get<1>(b);
else return get<2>(a) > get<2>(b);
};
priority_queue<tuple<T, vector<int>, vector<T>>, vector<tuple<T, vector<int>, vector<T>>>, decltype(func)> priq{ func };
map<vector<int>, vector<int>> spurnode;
rep(i, k - 1) {
int siz = path[i].size();
vector<int> route;
set<int> r;
T cost = 0;
rep(j, siz - 1) {
route.push_back(path[i][j]);
r.insert(path[i][j]);
spurnode[route].push_back(path[i][j + 1]);
if (j != 0) {
for (const auto& aa : g[path[i][j - 1]]) {
if (aa.to == path[i][j]) {
cost += aa.cost;
break;
}
}
}
for (const auto& aa : spurnode[route])deleted[path[i][j]][aa] = deleted[aa][path[i][j]] = true;
if (j > 0)deleted[path[i][j - 1]][path[i][j]] = deleted[path[i][j]][path[i][j - 1]] = true;
res = dijkstra<T>(g, path[i + 1], path[i][j], goal, n, Inf, deleted, r);
if (j > 0)deleted[path[i][j - 1]][path[i][j]] = deleted[path[i][j]][path[i][j - 1]] = false;
for (const auto& aa : spurnode[route])deleted[path[i][j]][aa] = deleted[aa][path[i][j]] = false;
if (res[goal] >= Inf)continue;
vector<int> tmp;
vector<T> tmp2(n);
for (int l = 0; l <= j; ++l) {
tmp2[path[i][l]] = anstmp[path[i][l]];
}
int l = 0;
for (; path[i][l] != path[i][j]; ++l) {
tmp2[path[i][l]] = anstmp[path[i][l]];
tmp.push_back(path[i][l]);
}
for (l = 0; path[i + 1][l] != goal; ++l) {
tmp2[path[i + 1][l]] = res[path[i + 1][l]];
tmp.push_back(path[i + 1][l]);
}
tmp.push_back(goal);
int siz2 = path[i + 1].size();
for (int l = 1; l < siz2; ++l) tmp2[path[i + 1][l]] = res[path[i + 1][l]] + anstmp[path[i][j]];
priq.push(make_tuple(cost + res[goal], tmp, tmp2));
}
if (priq.empty()) {
for (; i < k - 1; ++i)ans[i + 1] = -1;
break;
}
auto tmp = priq.top();
priq.pop();
while (routememo.find(get<1>(tmp)) != routememo.end() and !priq.empty()) {
tmp = priq.top();
priq.pop();
}
if (routememo.find(get<1>(tmp)) != routememo.end() and priq.empty()) {
for (; i < k - 1; ++i)ans[i + 1] = -1;
break;
}
path[i + 1] = get<1>(tmp);
ans[i + 1] = get<0>(tmp);
routememo.insert(path[i + 1]);
}
return;
}
#line 1 "kyopro/library/graph/kth-shortest-path_yen.cpp"
/*
* @title kth-shortest-path(yen's algorithm)
* @docs kyopro/docs/kth-shortest-path_yen.md
*/
template<typename T>
vector<T> dijkstra(graph<T>& gh, vector<int>& path, const int& v, const int& g, const int& n, const T Inf, const vector<vector<bool>>& deleted, set<int> r) {
priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> priq;
vector<T> res(n);
vector<int> prev(n);
fill(all(prev), -1);
fill(all(res), Inf);
priq.push({ 0, v });
res[v] = 0;
int top;
while (!priq.empty()) {
top = priq.top().second;
priq.pop();
for (const auto& aa : gh[top]) {
if (res[top] + aa.cost >= res[aa.to] or deleted[top][aa.to] or r.find(aa.to) != r.end())continue;
res[aa.to] = aa.cost + res[top];
prev[aa.to] = top;
priq.push({ res[aa.to], aa.to });
}
}
for (int i = g; i != -1; i = prev[i])path.push_back(i);
reverse(all(path));
return res;
}
template<typename T>
void ksp(graph<T>& g, const int& n, const int& start, const int& goal, const int& k, vector<vector<int>>& path, vector<T>& ans, const T& Inf) {
set<vector<int>> routememo;
vector<T> res, anstmp;
vector<vector<bool>> deleted(n, vector<bool>(n));
ans.resize(k);
path.resize(k);
res = dijkstra<T>(g, path[0], start, goal, n, Inf, deleted, {});
ans[0] = res[goal];
anstmp = res;
routememo.insert(path[0]);
auto func = [](const tuple<T, vector<int>, vector<T>>& a, const tuple<T, vector<int>, vector<T>>& b) -> bool {
if (get<0>(a) != get<0>(b))return get<0>(a) > get<0>(b);
else if (get<1>(a) != get<1>(b))return get<1>(a) > get<1>(b);
else return get<2>(a) > get<2>(b);
};
priority_queue<tuple<T, vector<int>, vector<T>>, vector<tuple<T, vector<int>, vector<T>>>, decltype(func)> priq{ func };
map<vector<int>, vector<int>> spurnode;
rep(i, k - 1) {
int siz = path[i].size();
vector<int> route;
set<int> r;
T cost = 0;
rep(j, siz - 1) {
route.push_back(path[i][j]);
r.insert(path[i][j]);
spurnode[route].push_back(path[i][j + 1]);
if (j != 0) {
for (const auto& aa : g[path[i][j - 1]]) {
if (aa.to == path[i][j]) {
cost += aa.cost;
break;
}
}
}
for (const auto& aa : spurnode[route])deleted[path[i][j]][aa] = deleted[aa][path[i][j]] = true;
if (j > 0)deleted[path[i][j - 1]][path[i][j]] = deleted[path[i][j]][path[i][j - 1]] = true;
res = dijkstra<T>(g, path[i + 1], path[i][j], goal, n, Inf, deleted, r);
if (j > 0)deleted[path[i][j - 1]][path[i][j]] = deleted[path[i][j]][path[i][j - 1]] = false;
for (const auto& aa : spurnode[route])deleted[path[i][j]][aa] = deleted[aa][path[i][j]] = false;
if (res[goal] >= Inf)continue;
vector<int> tmp;
vector<T> tmp2(n);
for (int l = 0; l <= j; ++l) {
tmp2[path[i][l]] = anstmp[path[i][l]];
}
int l = 0;
for (; path[i][l] != path[i][j]; ++l) {
tmp2[path[i][l]] = anstmp[path[i][l]];
tmp.push_back(path[i][l]);
}
for (l = 0; path[i + 1][l] != goal; ++l) {
tmp2[path[i + 1][l]] = res[path[i + 1][l]];
tmp.push_back(path[i + 1][l]);
}
tmp.push_back(goal);
int siz2 = path[i + 1].size();
for (int l = 1; l < siz2; ++l) tmp2[path[i + 1][l]] = res[path[i + 1][l]] + anstmp[path[i][j]];
priq.push(make_tuple(cost + res[goal], tmp, tmp2));
}
if (priq.empty()) {
for (; i < k - 1; ++i)ans[i + 1] = -1;
break;
}
auto tmp = priq.top();
priq.pop();
while (routememo.find(get<1>(tmp)) != routememo.end() and !priq.empty()) {
tmp = priq.top();
priq.pop();
}
if (routememo.find(get<1>(tmp)) != routememo.end() and priq.empty()) {
for (; i < k - 1; ++i)ans[i + 1] = -1;
break;
}
path[i + 1] = get<1>(tmp);
ans[i + 1] = get<0>(tmp);
routememo.insert(path[i + 1]);
}
return;
}